(1)输入:会被放缩到6464
(2)输出:6464
(3)数据集:
import glob
import torch
from PIL import Image
from torch import nn
from torch.utils import data
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import oslog_dir = "./model/dcgan.pth"
images_path = glob.glob('./data/xinggan_face/*.jpg')BATCH_SIZE = 32
dataset = FaceDataset(images_path)
data_loader = data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
image_batch = next(iter(data_loader))transform = transforms.Compose([transforms.Resize(64),transforms.ToTensor(),transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])class FaceDataset(data.Dataset):def __init__(self, images_path):self.images_path = images_pathdef __getitem__(self, index):image_path = self.images_path[index]pil_img = Image.open(image_path)pil_img = transform(pil_img)return pil_imgdef __len__(self):return len(self.images_path)# 定义生成器
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.linear1 = nn.Linear(100, 256*16*16)self.bn1 = nn.BatchNorm1d(256*16*16)self.deconv1 = nn.ConvTranspose2d(256, 128, kernel_size=3, padding=1) # 输出:128*16*16self.bn2 = nn.BatchNorm2d(128)self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1) # 输出:64*32*32self.bn3 = nn.BatchNorm2d(64)self.deconv3 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1) # 输出:3*64*64def forward(self, x):x = F.relu(self.linear1(x))x = self.bn1(x)x = x.view(-1, 256, 16, 16)x = F.relu(self.deconv1(x))x = self.bn2(x)x = F.relu(self.deconv2(x))x = self.bn3(x)x = F.tanh(self.deconv3(x))return x# 定义判别器
class Discrimination(nn.Module):def __init__(self):super(Discrimination, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2) # 64*31*31self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2) # 128*15*15self.bn1 = nn.BatchNorm2d(128)self.fc = nn.Linear(128*15*15, 1)def forward(self, x):x = F.dropout(F.leaky_relu(self.conv1(x)), p=0.3)x = F.dropout(F.leaky_relu(self.conv2(x)), p=0.3)x = self.bn1(x)x = x.view(-1, 128*15*15)x = torch.sigmoid(self.fc(x))return x# 定义可视化函数
def generate_and_save_images(model, epoch, test_noise_):predictions = model(test_noise_).permute(0, 2, 3, 1).cpu().numpy()fig = plt.figure(figsize=(20, 160))for i in range(predictions.shape[0]):plt.subplot(1, 8, i+1)plt.imshow((predictions[i]+1)/2)# plt.axis('off')plt.show()# 训练函数
def train(gen, dis, loss_fn, gen_opti, dis_opti, start_epoch):print("开始训练")test_noise = torch.randn(8, 100, device=device)writer = SummaryWriter(r'D:\Project\PythonProject\Ttest\run')writer.add_graph(gen, test_noise)#############################D_loss = []G_loss = []# 开始训练for epoch in range(start_epoch, 500):D_epoch_loss = 0G_epoch_loss = 0batch_count = len(data_loader) # 返回批次数for step, img, in enumerate(data_loader):img = img.to(device)size = img.shape[0]random_noise = torch.randn(size, 100, device=device) # 生成随机输入# 固定生成器,训练判别器dis_opti.zero_grad()real_output = dis(img)d_real_loss = loss_fn(real_output, torch.ones_like(real_output, device=device))d_real_loss.backward()generated_img = gen(random_noise)# print(generated_img)fake_output = dis(generated_img.detach())d_fake_loss = loss_fn(fake_output, torch.zeros_like(fake_output, device=device))d_fake_loss.backward()dis_loss = d_real_loss + d_fake_lossdis_opti.step()# 固定判别器,训练生成器gen_opti.zero_grad()fake_output = dis(generated_img)gen_loss = loss_fn(fake_output, torch.ones_like(fake_output, device=device))gen_loss.backward()gen_opti.step()with torch.no_grad():D_epoch_loss += dis_loss.item()G_epoch_loss += gen_loss.item()writer.add_scalar("loss/dis_loss", D_epoch_loss / (epoch+1), epoch+1)writer.add_scalar("loss/gen_loss", G_epoch_loss / (epoch+1), epoch+1)with torch.no_grad():D_epoch_loss /= batch_countG_epoch_loss /= batch_countD_loss.append(D_epoch_loss)G_loss.append(G_epoch_loss)print("Epoch:{}, 判别器损失:{}, 生成器损失:{}.".format(epoch, dis_loss, gen_loss))generate_and_save_images(gen, epoch, test_noise)state = {"gen": gen.state_dict(),"dis": dis.state_dict(),"gen_opti": gen_opti.state_dict(),"dis_opti": dis_opti.state_dict(),"epoch": epoch}torch.save(state, log_dir)plt.plot(range(1, len(D_loss)+1), D_loss, label="D_loss")plt.plot(range(1, len(D_loss)+1), G_loss, label="G_loss")plt.xlabel('epoch')plt.legend()plt.show()if __name__ == '__main__':device = "cuda:0" if torch.cuda.is_available() else "cpu"gen = Generator().to(device)dis = Discrimination().to(device)loss_fn = torch.nn.BCELoss()gen_opti = torch.optim.Adam(gen.parameters(), lr=0.0001)dis_opti = torch.optim.Adam(dis.parameters(), lr=0.00001)start_epoch = 0if os.path.exists(log_dir):checkpoint = torch.load(log_dir)gen.load_state_dict(checkpoint["gen"])dis.load_state_dict(checkpoint["dis"])gen_opti.load_state_dict(checkpoint["gen_opti"])dis_opti.load_state_dict(checkpoint["dis_opti"])start_epoch = checkpoint["epoch"]print("模型加载成功,epoch从{}开始训练".format(start_epoch))train(gen, dis, loss_fn, gen_opti, dis_opti, start_epoch)
开始训练
Epoch:0, 判别器损失:1.6549043655395508, 生成器损失:0.7864767909049988.
Epoch:20, 判别器损失:1.3690211772918701, 生成器损失:0.6662370562553406.
Epoch:40, 判别器损失:1.413375735282898, 生成器损失:0.7497923970222473.
Epoch:60, 判别器损失:1.2889504432678223, 生成器损失:0.8668195009231567.
Epoch:80, 判别器损失:1.2824485301971436, 生成器损失:0.805076003074646.
Epoch:100, 判别器损失:1.3278448581695557, 生成器损失:0.7859240770339966.
Epoch:120, 判别器损失:1.39650297164917, 生成器损失:0.7616179585456848.
Epoch:140, 判别器损失:1.3387322425842285, 生成器损失:0.811163067817688.
Epoch:160, 判别器损失:1.1281094551086426, 生成器损失:0.7557946443557739.
Epoch:180, 判别器损失:1.369300365447998, 生成器损失:0.5207887887954712.