PPYOLOE目标检测训练框架使用说明
创始人
2025-05-31 06:50:33

数据集准备

  1. 数据集标注参考博客【使用labelimg制作数据集】:https://blog.csdn.net/qq_41251963/article/details/111190442

  1. 标注数据注意事项,图片名称为纯数字,例如1289.jpg ;不要出现其他字符,否则下面代码转换会报错。

  1. 标注好的数据集格式为VOC格式,AI Studio 中PPYOLOE用到的数据格式为coco数据格式,需要将标注好的数据进行格式转换。执行python voc2coco.py 即可!转换代码如下:

voc2coco.py

import os
import random
import shutil
import sys
import json
import glob
import xml.etree.ElementTree as ET"""
代码来源:https://github.com/Stephenfang51/VOC_to_COCO
You only need to set the following three parts
1.val_files_num : num of validation samples from your all samples
2.test_files_num = num of test samples from your all samples
3.voc_annotations : path to your VOC dataset Annotations(最好写成绝对路径)"""
val_files_num = 0
test_files_num = 0
voc_annotations = r'C:/Users/liq/Desktop/VOC/Annotations/'  #remember to modify the pathsplit = voc_annotations.split('/')
coco_name = split[-3]
del split[-3]
del split[-2]
del split[-1]
del split[0]
# print(split)
main_path = ''
for i in split:main_path += '/' + imain_path = main_path + '/'# print(main_path)coco_path = os.path.join(main_path, coco_name+'_COCO/')
coco_images = os.path.join(main_path, coco_name+'_COCO/images')
coco_json_annotations = os.path.join(main_path, coco_name+'_COCO/annotations/')
xml_val = os.path.join(main_path, 'xml', 'xml_val/')
xml_test = os.path.join(main_path, 'xml/', 'xml_test/')
xml_train = os.path.join(main_path, 'xml/', 'xml_train/')voc_images = os.path.join(main_path, coco_name, 'JPEGImages/')#from https://www.php.cn/python-tutorials-424348.html
def mkdir(path):path=path.strip()path=path.rstrip("\\")isExists=os.path.exists(path)if not isExists:os.makedirs(path)print(path+' ----- folder created')return Trueelse:print(path+' ----- folder existed')return False
#foler to make, please enter full pathmkdir(coco_path)
mkdir(coco_images)
mkdir(coco_json_annotations)
mkdir(xml_val)
mkdir(xml_test)
mkdir(xml_train)#voc images copy to coco images
for i in os.listdir(voc_images):img_path = os.path.join(voc_images + i)shutil.copy(img_path, coco_images)# voc images copy to coco images
for i in os.listdir(voc_annotations):img_path = os.path.join(voc_annotations + i)shutil.copy(img_path, xml_train)print("\n\n %s files copied to %s" % (val_files_num, xml_val))for i in range(val_files_num):if len(os.listdir(xml_train)) > 0:random_file = random.choice(os.listdir(xml_train))#         print("%d) %s"%(i+1,random_file))source_file = "%s/%s" % (xml_train, random_file)if random_file not in os.listdir(xml_val):shutil.move(source_file, xml_val)else:random_file = random.choice(os.listdir(xml_train))source_file = "%s/%s" % (xml_train, random_file)shutil.move(source_file, xml_val)else:print('The folders are empty, please make sure there are enough %d file to move' % (val_files_num))breakfor i in range(test_files_num):if len(os.listdir(xml_train)) > 0:random_file = random.choice(os.listdir(xml_train))#         print("%d) %s"%(i+1,random_file))source_file = "%s/%s" % (xml_train, random_file)if random_file not in os.listdir(xml_test):shutil.move(source_file, xml_test)else:random_file = random.choice(os.listdir(xml_train))source_file = "%s/%s" % (xml_train, random_file)shutil.move(source_file, xml_test)else:print('The folders are empty, please make sure there are enough %d file to move' % (val_files_num))breakprint("\n\n" + "*" * 27 + "[ Done ! Go check your file ]" + "*" * 28)# !/usr/bin/python# pip install lxmlSTART_BOUNDING_BOX_ID = 1
PRE_DEFINE_CATEGORIES = None# If necessary, pre-define category and its id
#  PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
#  "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
#  "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
#  "motorbike": 14, "person": 15, "pottedplant": 16,
#  "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}"""
main code below are from
https://github.com/Tony607/voc2coco
"""def get(root, name):vars = root.findall(name)return varsdef get_and_check(root, name, length):vars = root.findall(name)if len(vars) == 0:raise ValueError("Can not find %s in %s." % (name, root.tag))if length > 0 and len(vars) != length:raise ValueError("The size of %s is supposed to be %d, but is %d."% (name, length, len(vars)))if length == 1:vars = vars[0]return varsdef get_filename_as_int(filename):try:filename = filename.replace("\\", "/")filename = os.path.splitext(os.path.basename(filename))[0]return int(filename)except:raise ValueError("Filename %s is supposed to be an integer." % (filename))def get_categories(xml_files):"""Generate category name to id mapping from a list of xml files.Arguments:xml_files {list} -- A list of xml file paths.Returns:dict -- category name to id mapping."""classes_names = []for xml_file in xml_files:tree = ET.parse(xml_file)root = tree.getroot()for member in root.findall("object"):classes_names.append(member[0].text)classes_names = list(set(classes_names))classes_names.sort()return {name: i for i, name in enumerate(classes_names)}def convert(xml_files, json_file):json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}if PRE_DEFINE_CATEGORIES is not None:categories = PRE_DEFINE_CATEGORIESelse:categories = get_categories(xml_files)bnd_id = START_BOUNDING_BOX_IDfor xml_file in xml_files:tree = ET.parse(xml_file)root = tree.getroot()path = get(root, "path")if len(path) == 1:filename = os.path.basename(path[0].text)elif len(path) == 0:filename = get_and_check(root, "filename", 1).textelse:raise ValueError("%d paths found in %s" % (len(path), xml_file))## The filename must be a numberimage_id = get_filename_as_int(filename)size = get_and_check(root, "size", 1)width = int(get_and_check(size, "width", 1).text)height = int(get_and_check(size, "height", 1).text)image = {"file_name": filename,"height": height,"width": width,"id": image_id,}json_dict["images"].append(image)## Currently we do not support segmentation.#  segmented = get_and_check(root, 'segmented', 1).text#  assert segmented == '0'for obj in get(root, "object"):category = get_and_check(obj, "name", 1).textif category not in categories:new_id = len(categories)categories[category] = new_idcategory_id = categories[category]bndbox = get_and_check(obj, "bndbox", 1)xmin = int(get_and_check(bndbox, "xmin", 1).text) - 1ymin = int(get_and_check(bndbox, "ymin", 1).text) - 1xmax = int(get_and_check(bndbox, "xmax", 1).text)ymax = int(get_and_check(bndbox, "ymax", 1).text)assert xmax > xminassert ymax > ymino_width = abs(xmax - xmin)o_height = abs(ymax - ymin)ann = {"area": o_width * o_height,"iscrowd": 0,"image_id": image_id,"bbox": [xmin, ymin, o_width, o_height],"category_id": category_id,"id": bnd_id,"ignore": 0,"segmentation": [],}json_dict["annotations"].append(ann)bnd_id = bnd_id + 1for cate, cid in categories.items():cat = {"supercategory": "none", "id": cid, "name": cate}json_dict["categories"].append(cat)os.makedirs(os.path.dirname(json_file), exist_ok=True)json_fp = open(json_file, "w")json_str = json.dumps(json_dict)json_fp.write(json_str)json_fp.close()xml_val_files = glob.glob(os.path.join(xml_val, "*.xml"))
xml_test_files = glob.glob(os.path.join(xml_test, "*.xml"))
xml_train_files = glob.glob(os.path.join(xml_train, "*.xml"))convert(xml_val_files, coco_json_annotations + 'val2017.json')
convert(xml_test_files, coco_json_annotations+'test2017.json')
convert(xml_train_files, coco_json_annotations + 'train2017.json')

Fork PPYOLOE项目并启动运行

PPYOLOE目标检测训练框架

https://aistudio.baidu.com/aistudio/projectdetail/5756078

按照main.ipynb流程依次执行即可!

  1. 导入所需要的第三方库

  1. 安装paddlex

  1. 创建数据集目录 将标注的图像数据上传到 MyDataset/JPEGImages 目录下;将coco格式数据标签annotations.json放到MyDataset目录下。

  1. 按比例切分数据集

  1. git PaddleDetection代码

  1. 进入PaddleDetection目录

  1. 根据需求修改配置文件,比如检测的目标类别数 进入/home/aistudio/config_file/目录下,修改visdrone_detection.yml中num_classes参数

  1. 开始训练

  1. 训练完成后评估模型

  1. 挑一张验证集的图片展示预测效果(可以到生成的目录下,打开查看)

  1. 导出模型,即可使用FastDeploy进行快速推理

相关内容

热门资讯

lazada按关键字搜索商品 ... item_search-按关键字搜索商品  lazada.item_search 公共参数 请求地...
华为p10闪存怎么检测华为p ... 首先,非常感谢您对华为P10的关注。为了检测华为P10的闪存情况,您可以按照以下步骤进行操作: ...
广州哪里可以学做咖啡,广州学做... 1. 咖啡学院:专业的咖啡学院提供全面的咖啡课程,包括咖啡豆知识、咖啡制作技巧、咖啡品尝和评估等。在...
如何发现手机被监听,首先,我们... 1. 检查手机设置:确保你的手机设置中的隐私设置已经正确配置,并且只允许你信任的应用访问你的位置、通...
day13 模块和异常捕获总结 day13 模块和异常捕获 一、生成器 (一)、什么是生成器 1...
寒假文化课辅导招生宣传语有哪些... 1. 寒假来袭,文化课辅导助你一臂之力! 2. 告别寒假无聊,加入文化课辅导班,充实自己! ...
【新星计划2023】SQL S... 【新星计划2023】SQL SERVER -- 基础知识1. Introduction1.1 Off...
街边烤鸡20一只,揭秘背后的猫... 为什么农村土鸡一只卖上百块,而街上的烤鸡才20块? 难道还真是往船长的四...
微信小程序根据CODE获取用户... public function get_user_opendid() { $code = $...
漳州新车上牌流程(漳州汽车上牌... 今天给各位分享漳州新车上牌流程的知识,其中也会对漳州汽车上牌需要居住证吗进行解释,如果能碰巧解决你现...
载字的部首是哪一个 极速百科网... 载字的部首是“车”。收到你的喜欢啦收到你的喜欢啦载字的部首是哪一个汉字“载”是一个非常古老的文字,其...
常用的 IntelliJ ID... 以下是 30 个 IntelliJ IDEA 常用的快捷键: Ctrl + S...
喜可以组什么词成语,标题:喜从... 喜逐颜开、喜笑颜开、双喜临门、喜出望外、喜从天降、沾沾自满收到你的喜欢啦收到你的喜欢啦标题:喜从天降...
莫失莫忘仙寿恒昌是什么意思,标... “莫失莫忘,仙寿恒昌”是一句寓意深刻的话,可以理解为“不要忘记,就能够长久保持健康和长寿”。这句话表...
关于Docker逃逸 关于Docker逃逸 文章目录关于Docker逃逸前言一、判断是否为docker容器?...
在Centos上架设Zerot... Zerotier在国外,经常不好访问,Moon根服务也不是很好用。我们可...
超薄网络变压器(百兆千兆万兆)... Hqst华强盛:随着主板小型化,超薄型网络变压器越来越有集中的需求&#x...
思铂睿油耗有多少(思铂睿油耗多... 本篇文章极速百科给大家谈谈思铂睿油耗有多少,以及思铂睿油耗多少钱一公里对应的知识点,希望对各位有所帮...
描写冬天的好词好句 极速百科网... 好词: 银装素裹、白雪皑皑、玉树琼枝、寒风凛冽、冰天雪地、寒气逼人、雪中送炭、红炉暖阁、寒梅傲...
dnf怎么带人强开魔界深渊 极... 地下城与勇士(简称DNF)是由腾讯发行的手机游戏。该游戏是一款2D卷轴式横版格斗过关网络游戏,大量继...
高通670相当于骁龙多少 极速... 高通670相当于骁龙多少高通670处理器,这是一款颇受关注的产品,尤其在智能手机领域。作为美国高通公...
Qt实战技能 快捷键: 多行注释: 选中多行---ctrl+/ 打开文件或...
CentOS操作系统libc.... 使用xshell登陆Linux后查看jdk版本提示 /lib64/libc.so.6: versio...
@RequestMapping... 在享受了@RequestMapping方便的处理映射时,忍不住会开始好奇&#x...
配风景照的的简短文字,穿越时光... 光影交织中,我寻找着生活的诗意。每一张风景照,都是我对大自然的热爱与敬畏。愿你也能在繁忙的生活中,找...
计算机专业的就业方向是什么,计... 计算机专业的就业方向非常广泛,主要包括以下几个方面: 1. 软件开发:这是计算机专业最主要的就...
诗圣是谁(诗圣是谁诗仙又是谁)... 本篇文章极速百科给大家谈谈诗圣是谁,以及诗圣是谁诗仙又是谁对应的知识点,希望对各位有所帮助,不要忘了...
表示红的成语ABAB 极速百科... 表示红的成语ABAB有:红红火火。收到你的喜欢啦收到你的喜欢啦
labview程序结构for循... wx供重浩:创享日记 对话框发送:labview程序 获取完整无水印报告...
[数据结构高频面试题]用两个栈... 文章目录 一、栈实现队列的特点分析 1、1 具体分析 1、2 整体概括 二、用栈模拟队列代码的实现 ...